Bulletin of the *Transilvania* University of Braşov • Vol 12(61), No. 2 - 2019 Series III: Mathematics, Informatics, Physics, 265-274 https://doi.org/10.31926/but.mif.2019.12.61.2.6

*-RICCI SOLITONS ON (ϵ) -PARA SASAKIAN 3-MANIFOLDS

Krishnendu DE^1 and Chiranjib DEY^2

Abstract

In the present paper we study *-Ricci solitons in (ϵ) -para Sasakian manifolds and prove that if an (ϵ) -para Sasakian 3-manifold with constant scalar curvature admits a *-Ricci soliton, then the *-Ricci soliton is steady if and only if $\mathcal{L}_V \xi$ is g-orthogonal to ξ provided $a = \text{Tr}\phi$ is constant. Beside these, we study gradient *-Ricci solitons on (ϵ) -para Sasakian 3-manifolds.

2000 Mathematics Subject Classification: 53C15, 53C25.

Key words: (ϵ) -para Sasakian manifolds, *-Ricci solitons, gradient *-Ricci solitons, *-Einstein manifold.

1 Introduction

In this paper, we introduce a new type of Ricci solitons, called *-*Ricci solitons* in (ϵ) -para Sasakian manifolds with indefinite metric which play a functional role in contemporary mathematics. The properties of a manifold solely depend on the nature of the metric defined on it. With the help of *indefinite metric*, A. Bejancu and K. L. Duggal [1] introduced (ϵ) -Sasakian manifolds. Also, Xufeng and Xiaoli [18] showed that every (ϵ) -Sasakian manifold must be a real hypersurface of some indefinite Kähler manifold. In 2010, Tripathi et.al[14] studied (ϵ) -almost paracontact manifolds, and in particular, (ϵ) -para Sasakian manifolds. They introduced the notion of an (ϵ) -para Sasakian structure. Since Sasakian manifolds with indefinite metric play significant role in physics [8], our natural trend is to study various contact manifolds with indefinite metric.

A Ricci soliton is a generalization of an Einstein metric. We recall the notion of Ricci soliton according to [5]. On manifold M, a Ricci soliton is a triple (g, V, λ) with g a Riemannian metric, V a vector field, called potential vector field and λ a real scalar such that

$$\pounds_V g + 2S + 2\lambda g = 0,\tag{1}$$

 $^{^1 \}rm Assistant$ Professor of Mathematics, Kabi Sukanta Mahavidyalaya , Bhadreswar, e-mail: krishnendu.de@outlook.in

²Dhamla JR. High School, Hooghly, e-mail: dey9chiranib@gmail.com